Transgender women in sport

Andria Bianchi

To cite this article: Andria Bianchi (2017): Transgender women in sport, Journal of the Philosophy of Sport, DOI: 10.1080/00948705.2017.1317602

To link to this article: http://dx.doi.org/10.1080/00948705.2017.1317602

Published online: 17 Apr 2017.
Transgender women in sport

Andria Bianchi

Department of Philosophy, University of Waterloo, Waterloo, Canada

ABSTRACT
This paper considers whether transgender (trans*) women should be permitted to compete in female categories in sports. Trans* women are often criticized for competing in female categories because they are seen as having an unfair advantage. Specifically, they are seen as having high levels of testosterone that unfairly enhance their performance in comparison to cisgender competitors. In this paper, I argue that trans* women should be permitted to compete in female categories. I suggest that if we want to maintain the skill thesis as a guiding principle of sports and allow trans* women to compete in female categories, then we need to take relevant genetic advantages into consideration by introducing a handicap system. I claim that a handicap system should consider both cisgender and transgender women's effective testosterone levels.

KEYWORDS Transgender; trans*; testosterone; genetic advantage; gender binary; skill thesis

Introduction
The number of people identifying as trans*/transgender is growing (Associated Press 2012; Canadian Press 2012; Weiler 2015). There are many questions that arise when discussing transgender persons and common social practices. These questions have prompted ethical debates regarding the moral permissibility of certain practices involving transgender individuals. One of the most prevalent topics involves trans* individuals and their participation in sports (Ellison 2012; Morgan 2013; Gillepsie 2016).

The question of whether transgender persons should be allowed to compete in accordance with their gender identity is relevant to all transgender individuals since sports categories are currently based on the strict male/female gender binary. However, transgender women receive considerably more criticism for competing in female categories because they are seen as having an unfair advantage. This unfair advantage is because they are viewed as having certain aspects of male physiology. Critics often believe that having, on average, more testosterone gives them an unfair advantage that makes them perform
immensely better than their female-born counterparts (Schultz 2011). Insofar as this is an unfair advantage, the argument goes, trans* women should not be permitted to compete in female categories.

This paper explores the issues relevant to transgender women in sports. After exploring certain arguments in support of and in opposition to trans* women competing in female categories, I argue that transgender women should be permitted to compete in accordance with their gender identity. Furthermore, I suggest that if we want to maintain the skill thesis as a guiding principle of sports (where sport results ought to be based on skillfulness), then we need to modify sports in order to take relevant genetic advantages into consideration by introducing a handicap system. I claim that a handicap system should consider athletes’ effective testosterone levels. In order to advance this argument, this paper will: (1) introduce what it means to be transgender; (2) consider cases against transgender women competing in female categories; (3) argue that trans* women should be permitted to compete in female categories; (4) present potential consequences of this argument; (5) respond to these consequences by considering Rachel McKinnon’s account of luck and credit; and (6) introduce a modified sports system that focuses on athletes’ levels of effective testosterone. Although this modified system seems like a huge undertaking, I argue that it is one of the only ways to maintain the skill thesis and permit trans* women to compete in female categories in response to the primary criticism that is used to exclude them. If readers of this paper are willing to dismiss the skill thesis as a guiding principle of sports, then there would be no need to make any modifications since transgender women would be allowed to participate. The purpose of this paper is to respond to those who want to maintain the skill thesis and include transgender women.

Being transgender

The term trans*/transgender refers to individuals whose gender identity does not correspond with ‘their gender assignment or phenotypic sex,’2 either because one identifies as the “opposite” sex, or because one’s gender identity defies [the male/female] binaristic classification’ (Dea 2016, 101). Although some trans* individuals may undergo sex reassignment surgery (sometimes referred to as gender confirmation surgery) or hormone therapy so that their sexual anatomy aligns with their gender identity, one does not need to pursue such procedures in order to be transgender (Dea 2016, 101). Transgender persons often encounter prejudices that stem from normative thinking regarding what it means to be male or female (e.g. the idea that women should have a particular sexual anatomy and be attracted to men). These prejudiced conceptions have significant consequences.3

As the number of people identifying as transgender rises, the question of whether they should be permitted to compete in the category of their gender
identity in sports is becoming increasingly salient. In the world of sport, where slight physical advantages can distinguish winners from losers and where participation is divided by gender, questions regarding trans* participation are framed differently than in any other setting. While heightened sensitivities exist with respect to how transgender individuals should be accommodated in different social settings, the world of sport is unique because trans* women may have advantages, and those advantages may be unfair in some way. Sport needs to respond to this potential problem by developing a fair and positive method to allow transgender women to compete in female categories.

Unfair advantages of transgender persons in sport

In considering whether trans* people should be permitted to compete in the category of their gender identity, I will focus on transgender women because they encounter the most amount of criticism when competing in female categories (Ellison 2012; Samano 2013; Nichols 2014).

One of the main arguments against allowing trans* women to compete in female categories is that it is unfair. Specifically, the argument is that transgender women have an unfair advantage since they have an exceptional amount of testosterone that supposedly makes them perform better than cisgender women (Schultz 2011). Since males are, on average, faster and stronger than biological women (Ziegler and Huntley 2013, 474), this argument suggests that transgender women will be unfairly advantaged if they are allowed to compete in female categories. So, the idea is that trans* women should not be allowed to compete in female categories because they possess unfair genetic advantages, which is mostly due to high testosterone levels. I will refer to this argument as the ‘fairness argument’.

In order to assess the fairness argument, I will reflect upon cases involving intersex and transgender individuals in sports. Although what it means to be intersex and transgender is importantly distinct, they have prompted similar controversies because they raise relevantly similar kinds of issues. Intersex persons are those ‘whose phenotype or genotype is atypical with respect to sex markers’ (Dea 2016, 99). Alternatively, transgender persons are typically born with male/female anatomy but feel as though they are in the wrong body. Although these differences are significant, it is important to consider intersex persons because they are often criticized for having too much testosterone to compete in female categories, which is thought to give them an unfair advantage. This is the same criticism that is applied to trans* women.

In order to determine whether an athlete can compete in male or female categories in sports, sex tests are often required. Sex tests are used to ensure that individuals compete in the appropriate category as determined by their sex, where one’s sex is determined by one’s sex chromosomes. Human beings usually have 46 chromosomes that are separated into pairs. The 23rd set of
chromosomes is the sex chromosomes. A person who has sex chromosomes XX is identified as a woman and someone with chromosomes XY is identified as a man (Schultz 2011, 230). Sports categories are based on this chromosomal distinction. A variety of sex tests have been used in the past; however, the most recent test was introduced in the 1990s, where sex testing was performed via a gene amplification technology called polymerase chain reaction. This technology is still used today, where its purpose is to search for the presence of Y chromosomes. If someone has a Y chromosome, then further testing is pursued to determine its region. If the Y chromosome is located in the sex chromosome region, then the athlete is often ineligible to compete in female categories (Schultz 2011, 232).

The outcomes of sex chromosomal tests were, and continue to be, significant for intersex and transgender athletes. At the 1985 World University Games, hurdler Maria José Martínez-Patiño was required to have a sex test. The results of her test indicated that she has XY chromosomes. So, even though ‘her body type, external sexual organs, gender identity, socialization, [and] birth certificate‘ indicated that she was a woman, she was expelled from the competition (Schultz 2011, 234). In 2009, Caster Semenya, the women’s 800-meter Track and Field champion underwent gender verification testing because of concerns that she did not meet the requirements of a woman. Although the International Association of Athletics Federation did not specify why Semenya failed to meet these requirements, her ‘ambiguous appearance, and tests showing high levels of testosterone’ plausibly motivated the extensive testing (Rogers 2009). In 2014, sprinter Dutee Chand was deemed ineligible to compete in the female category because she has a condition called hyperandrogenism (Gillepsie 2016). Hyperandrogenism is when one’s body produces high levels of testosterone, which supposedly granted Chand an unfair advantage.

The fairness argument which is used to exclude intersex individuals from competing in female categories is also applied to transgender women. In 1976, Renee Richards, a professional tennis player and transgender woman, was asked to take a sex test. She refused to take the test, which prompted the US Tennis Association to ban her from competing. She brought her case to the US Supreme Court, who said that requiring her to take a sex test was ‘grossly unfair, discriminatory and inequitable‘ (Schultz 2011, 235). However, when Richards was legally permitted to compete in female categories, 25 women withdrew from a subsequent tournament, arguing that ‘despite her operation and resulting feminine appearance, she still retained the muscular advantages of a male and genetically remained a male‘ (Schultz 2011, 236). A similar event occurred with American Mixed Martial Art (MMA) fighter Fallon Fox. After coming out as transgender, the MMA community responded with statements that explicitly suggested that Fox had an advantage over her competitors (because of high testosterone levels) and that she should not be permitted to compete in female categories (Morgan 2013; Samano 2013).
The fairness argument often prevents intersex persons and transgender women from competing in female categories because it is thought that ‘an athlete should not be enjoying the benefits of natural testosterone predominance that is normally seen in a biologically-born male’ (Ziegler and Huntley 2013, 481). Although this argument is frequently used, should it be accepted? Is it true that transgender women possess an advantage because they have high levels of testosterone that allow them to perform better? If yes, should this matter? These questions will be explored below.

Transgender athletes and the natural lottery

According to the fairness argument, transgender women should not be allowed to compete in female categories in sports since they possess unfair advantages due to high levels of testosterone. One explanation for this argument is the *skill thesis*, which says that sports are meant ‘to determine which opponent is more skillful’ (Simon 2007, 13). In order to test competitors’ skillfulness, the significance of unfair external influences needs to be mitigated. There are different types of external influences that exist, some of which need to be mitigated in order to create the kinds of environments that determine which competitor is most skillful.

One way to maintain the skill thesis is to mitigate influences that are physically external to the athlete, such as sporting equipment. The idea is that if every athlete uses the same equipment, then any subsequent acts will be based on an athlete’s skill, thereby maintaining the skill thesis.

Another way to maintain the skill thesis is to mitigate hormonal advantages, irrespective of how these advantages come about. Although there are different reasons that hormonal advantages might exist (some of which may be seen as immoral, such as steroid use), the reason to mitigate all hormonal advantages is to promote fairness in the competition, and specifically the skill thesis. According to the very nature of sport, ‘sportspersons deserve praise for their skills just to the extent they express expertise that is precisely a matter of personal development or the result of persistent hard work, practice, and effort’ (Carr 1999, 4). So, when people have unnatural competitive advantages and their competitors have no way to naturally compete within the parameters of these advantages, then it is seen as unfair.

One of the arguments against trans* women competing in female categories is that they have high levels of testosterone that will allow them to be unfairly advantaged in comparison to their cisgender counterparts. As it turns out, the presence of high testosterone does not guarantee an increased level of performance. Rather, the way that one’s body responds to testosterone is relevant (Schultz 2011). So, the argument against trans* women competing in female categories must actually be based on the assumption that they have a higher level of *effective* testosterone in comparison to their cisgender competitors. I
am using the term ‘effective testosterone’ to refer to the testosterone that can be effectively used by one’s body in order to benefit or enhance one’s performance. Although this argument is currently unproven, if it is the case that trans* women naturally possess a higher level of effective testosterone than cisgender competitors, then it would be an unfair factor that needs to be mitigated since cisgender women cannot possess a similar amount of effective testosterone through hard work, effort, and practice. So, certain genetic factors may be fair, but the higher levels of effective testosterone that may be possessed by trans* women are unfair since cisgender women have no ability to naturally possess those same attributes.

The fairness argument suggests that trans* women are unfairly advantaged and should not be permitted to compete in female categories. However, we can only make sense of this claim about unfairness by accepting something like the skill thesis, which is a guiding principle for fairness in sports. If transgender women are advantaged because of high levels of effective testosterone, then the skill thesis is undermined, specifically because their athletic successes are not entirely based on skill in comparison to their cisgender counterparts.

There are numerous ways to debunk this argument. One way is to dismiss the importance of the skill thesis by showing that there are many genetic attributes that are potentially unfair in accordance with gender-segregated standards. According to this idea, the skill thesis is unrealistic. For instance, Michael Phelps is an incredible swimmer; however, it is plausible that his success in swimming is at least partially influenced by his ‘wingspan’, the fact that he is double jointed, and his size 14 feet (Hadhazy 2008). Each of these characteristics is genetic attributes that many of his competitors probably lack. This example shows that certain attributes may be potentially unequal or unnatural in comparison to other competitors in gender-segregated categories in a similar kind of way as the (unproven) argument that trans* women have unnaturally high levels of effective testosterone.

If we apply the above argument to the case of a trans* woman with increased levels of effective testosterone, then this might mean that she should be allowed to compete in female categories since natural genetic endowments are already a part of sports. The argument in which genetic advantages are already a part of sports is based on the natural lottery argument, which says that ‘because of the luck of the initial draw of talents, skills, and abilities, overall outcomes in sports ultimately are more the result of luck than we might think’ (Simon 2007, 14). So, although transgender women might be genetically advantaged in seemingly unfair ways, there are numerous examples in which successful athletes have unique features that are based on genetics, as opposed to pure skill. This might lead one to argue that the skill thesis is incorrect since genetic advantages already contribute to successfulness in sports, from which trans* women should be allowed to compete in female categories.
One possible response to the natural lottery argument is that a distinction might exist between the kinds of genetic features that provide competitive advantages to certain athletes, and only some of these advantages are unfair. It might be suggested that the types of genetic endowments that presently exist in gender-segregated sports are different than the potential genetic advantages of some trans* women, specifically trans* women who do not undergo interventions to yield biological changes. The primary distinction here is that under a system of gender-segregated categories, certain genetic advantages are and should be acceptable in relation to the norm that exists in these categories. In fact, persons with genetic advantages are often encouraged to participate since they may influence certain results in a way that is exciting for spectators to witness (e.g. Phelps breaking another record). However, if trans* women who do not undergo biological interventions do possess high levels of effective testosterone that are only typical in cisgender men (which is the argument used to exclude them from competing in female categories), then perhaps it is not an appropriate kind of advantage when compared to the cisgender women that compete in the same gender-segregated category. The reason that this kind of advantage might be interpreted as unfair is because there is no possibility for other cisgender competitors to naturally possess those same advantages. Although it is unlikely that there will ever be a sporting event in which every participant starts from a completely equal playing field (e.g. many cisgender men have no ability to possess Phelps’s wingspan and size 14 feet), the genetic advantages that trans* women may have when they do not pursue hormonal interventions may be unfair. The reason that some genetic advantages (e.g. big feet) are not comparable to high levels of effective testosterone is based on certain prejudices regarding what it means to compete in gender-segregated categories. This seems to suggest that it might be appropriate for trans* women who undergo hormonal interventions to participate in female categories since any unfair genetic advantages will be mitigated, whereas trans* women who do not pursue interventions may be unfairly advantaged.

This distinction between certain types of genetic advantages is important to consider. However, I do not want to dismiss the possibility that all trans* women should be allowed to participate in female categories irrespective of whether they have high levels of effective testosterone (which is recognized as the primary ‘problem’) or pursue biological interventions given the broad range of persons that may identify as women (regardless of biological interventions) (Serano 2007; Dea 2016). This is especially the case since it is likely effective testosterone levels vary among all individuals irrespective of their gender identity.

In concluding this section, it seems that we have a dilemma to consider regarding the skill thesis and transgender women. One possibility is that the skill thesis is unrealistic since genetic advantages already contribute to successfulness in sports, from which it follows that trans* women should be allowed to
compete in female categories. Another possibility is that the skill thesis ought to be the guiding principle in sports, from which it follows that the high levels of effective testosterone that supposedly make it unfair for trans* women to compete in female categories ought to be mitigated. This latter option will be assessed below given the prevalence of the skill thesis (Carr 1999; Simon 2007).

Maintaining the skill thesis and the natural lottery

If the skill thesis represents the way that sports should operate, then the high levels of effective testosterone that trans* women may possess in comparison to their cisgender competitors need to be mitigated in order for them to fairly compete in female categories. In order to maintain the skill thesis while taking these genetic advantages into account, I propose using McKinnon’s theory of luck and credit as a starting point. In her article, ‘Getting Luck Properly Under Control’, McKinnon suggests that the amount of credit that persons deserve should be altered as a result of their luck. She says that ‘insofar as an agent’s obtaining an outcome involves good luck, we should remove credit proportional to the good luck; similarly, insofar as an agent’s obtaining an outcome involves bad luck, we should attribute credit proportional to the bad luck’ (McKinnon 2013, 497). According to her account, a successful athlete should only be credited in relation to their skill. In order to determine how much credit one deserves, McKinnon’s account depends on probabilistic examples. She introduces the case of Bill to demonstrate how her account works. In this example, Bill is selected to participate in a million-dollar half-time contest at a basketball game. In order to win the million dollars, Bill must make a full-court shot. Bill has never played basketball before, but he makes the shot and wins the money. After introducing this example, McKinnon considers how much credit Bill deserves for his unlikely successful shot. Considering he made the shot without any basketball experience, McKinnon assumes that Bill has a 1% chance of making full-court shots (2013, 505). So, how much should Bill be credited for making the shot? If, given many shots, Bill would make on average a shot 1% of the time, then McKinnon says that we should attribute 1% of his credit to skill and the remainder amount to luck (2013, 505).

McKinnon provides us with a way to maintain the skill thesis while allowing all trans* women who possess unfairly high levels of effective testosterone to participate in female categories. Her account offers a starting point to mitigate these advantages by separating unfair genetic endowments (luck) from skill in regard to the credit that one deserves.

Based on this suggestion, how might we apply McKinnon’s account to genetic advantages in sports for trans* women, specifically regarding effective testosterone levels? One suggestion is to implement some type of ‘luck scale’ in sports, which would be developed by geneticists, physiologists, kinesiologists, etc. in order to gage any unfair genetic advantages that a trans* woman has
in comparison to cisgender competitors on the basis of effective testosterone. If this type of scale were implemented, then a trans* woman would only be credited for her skillfulness as opposed to any lucky, unfair genetic advantages, thereby maintaining the skill thesis. The reason that a luck scale would need to be developed in order to apply McKinnon’s account to genetically advantaged athletes is because her current account determines skillfulness on the basis of probabilities/the repeatability of an achievement(s). Given that unfair genetic attributes cannot be determined by this kind of analysis, one’s skill would need to be separated from one’s unfair genetic attributes in comparison to one’s competitors in another kind of way. The luck scale seems to meet this requirement.

We can apply this potential account to the case of transgender women through the following example. Suppose Jamie is a transgender woman who wants to compete in female categories in running. One of her competitors, Kelly, is a cisgender woman. Let’s imagine that Jamie easily defeats Kelly. Although current running standards would classify Jamie as the winner, the above account would require assessing Jamie’s level of effective testosterone in comparison to her success and Kelly’s level of effective testosterone in relation to her failure in order to determine how much credit Jamie ought to receive. If Jamie has a higher level of effective testosterone in comparison to Kelly, then perhaps Jamie ought to be credited less since her performance was heavily influenced by unfair genetic attributes, as a result of her being a trans* woman competing in a female category. If, however, Kelly also had a high level of effective testosterone and a strong likelihood of success, then Jamie would deserve more credit since her genetic endowments were not as advantageous as they would have been in the first scenario. The reason that effective testosterone would be the genetic attribute that would need to be assessed in relation to the amount of credit that one deserves in cases involving trans* women is because that seems to be the most ‘problematic’ advantage of which trans* women are criticized.

The luck scale could be used to mitigate a variety of genetic endowments if certain features are recognized as contributing to unfair advantages in sport. However, for the purposes of this paper, it seems that mitigating levels of effective testosterone would be the only genetic attribute that is relevant to addressing the primary argument that is used against trans* women who want to compete in female categories.

Potential response

One potential response to the luck scale is that it does not go far enough. More specifically, one might note that the luck scale does not modify sports in any way other than encouraging athletic onlookers to be less impressed by some athletic achievements. Given that athletes who accomplish athletic achievements typically deserve significant credit, the idea that someone might be able to win the Olympics without deserving much credit seems absurd. Not only would it
be odd for athletic spectators to be encouraged to be less impressed by some athletic results, but it would probably feel ridiculous to win the Olympics and fail to be praised by supporters. Therefore, it seems that further modifications need to be made to alter the results of sports in order to more reasonably account for one’s skill vs. luck.

The modification that I would like to suggest and endorse as a way to maintain the skill thesis is that of a handicap system that is already used in some sports today. The purpose of a handicap system is to assist players to play on somewhat equal terms so that the results accurately reflect players’ skill. One sport that uses this system is amateur golf. In golf, a handicap is defined as ‘a numerical measurement of a player’s potential (not actual) scoring ability on a course of standard difficulty’ (Golf Canada 2016). If someone is an exceptional golfer, then their handicap will be low, which means that they are required to complete the course in a fewer number of golf swings than other players. On the other hand, a poor golfer will have a high handicap, thereby enabling them to take more golf swings to complete the course. Given that each players’ handicap is determined by their skill, the players are able to measure ‘one’s performance and progress and to enable golfers of differing abilities to compete on an equitable basis’ (Golf Canada 2016). This handicap system reflects McKinnon’s main point in which one ought to be credited in accordance with their skill. The difference is that this system does not require individuals to be credited less, but it proactively mitigates any unequal advantages at the start of each event.

I argue that this handicap system ought to be applied to mitigate the levels of effective testosterone of every transgender and cisgender woman competing in certain individual female events at the Olympic level in order to maintain the skill thesis. One factor that lends some plausibility to the handicap suggestion is that many traditional Olympic events measure certain athletic performances in individual sports (e.g. speed and strength events). As noted above, one of the reasons that transgender women are criticized for competing in female categories is because of the idea that they possess high levels of effective testosterone that are more typical in cisgender males. However, in order to appropriately implement this kind of handicap system, all athletes’ levels of effective testosterone would need to be mitigated since it is likely that cisgender women may also possess high levels of effective testosterone. This inclusive handicap system (for all competitors in female categories) appropriately recognizes and responds to trans* gender women’s legitimate desire to be treated equally in gender-segregated sports. In order to describe how this handicap system would work in practice, consider the following example.

Suppose that a trans* woman plans to compete in a female category in running, where a high amount of effective testosterone would influence her results in a way that undermines the skill thesis. In order for a handicap system to apply to this case, some calculation of how much advantage excess testosterone generates would need to be gained. The amount of advantage that the
transgender woman in our example (alongside the other trans* and cisgender competitors) has would need to be calculated. It seems reasonable to suggest that this calculation would need to occur on the same day as the race in order to appropriately account for any recent hormonal changes. Then, this number could be applied to adjust her final race time or proactively require her to give the other runners a head start.13 The transgender woman’s level of effective testosterone would be calculated and applied to her race in comparison to her competitors’ levels of effective testosterone. Therefore, the overall results would reflect the actual winner since all participants would have a handicap as determined by their levels of effective testosterone. This kind of system allows the skill thesis to be maintained by mitigating relevant genetic advantages for all competitors and responding to the discriminatory policies that trans* women often encounter because of supposedly high levels of effective testosterone.14

One objection to my proposal is that it is too invasive since athletes would have to provide sports organizations with detailed personal information in order to compete. However, it seems that this kind of mitigation is necessary in order to maintain the skill thesis and to give all competitors the opportunity to compete in accordance with their gender identity. If athletes and organizations are unwilling to provide or require this kind of information, then a consequence is that they will be unable to maintain the skill thesis as it relates to unfair levels of effective testosterone. My account proposes a radical way to include trans* women by addressing the primary argument that is used against them to compete in female categories. By implementing a handicap system to monitor effective testosterone levels in female categories, the skill thesis will be maintained and all women can compete in female categories. Although it might be easier to remove the skill thesis entirely, there is some reason to believe that the skill thesis ought to persist as a matter of determining the most skilled and praiseworthy athletes.

Conclusion

This paper considered whether trans* women ought to be permitted to compete in female categories. One of the primary arguments against allowing transgender women to compete in female categories is that they are unfairly advantaged because they possess high levels of effective testosterone that make them perform better than cisgender women. In response to this argument, this paper initially demonstrated that genetic advantages frequently occur in sports and that they are not necessarily unfair.

The problem with this response is that it undermines the skill thesis, which is a guiding principle for sports. The skill thesis says that sports are supposed to determine the most skilled competitor, but if genetic attributes contribute to successes, then they undermine the significance of skill. This is a potential problem for many athletes and one that is used to exclude trans* women from
competing in female categories, specifically because of unfair levels of effective testosterone that trans* women are seen to possess.

Although it seems reasonable to dismiss the skill thesis and allow genetically advantaged athletes to compete without any qualms, the skill thesis is a widespread view. If the skill thesis represents the way that sports should operate, then any unfair genetic advantages have to be mitigated.

I initially suggested that some type of luck scale might need to be developed in order to gage effective testosterone levels so that athletes’ credit can be influenced accordingly and trans* women can compete in female categories. One problem with the luck scale is that it does not modify the results of sports in a meaningful way. In response, I suggested that a handicap system ought to be implemented. This system is based on the idea that the skill thesis ought to be maintained in sports. According to this handicap system, transgender and cisgender women would be given a handicap as determined by their effective testosterone levels, and the results would be influenced accordingly. This handicap system responds to the primary argument that is used to exclude trans* women from competing in female categories. This system allows all competitive athletes in female categories, including all transgender women who have and have not undergone biological interventions, to compete in accordance with their gender identity.

Notes

1. The term trans* or transgender refers to individuals whose gender identity differs from their gender assignment/phenotypic sex (Dea 2016). Trans* is sometimes used ‘in place of “transgender” in order to signify inclusivity and a broad openness to the full range of trans identities, in particular non-binary trans identities’ (Dea 2016, 102). I will be using these terms interchangeably.

2. According to Dea (2016, 83), ‘the kinds of features that we count as markers of biological sex include both genotype (genes and, in particular, chromosomes) and phenotype (an organism’s observable physical characteristics).’

3. For instance, between 20 and 40% of the 1.6 million homeless youth in the United States are transgender, most often because their families oppose their transgender identity (National Center for Transgender Equality 2016).

4. Many of my arguments apply to all transgender persons. My arguments are not meant to exclude others who identify as transgender.

5. ‘Cisgender’ describes individuals ‘whose gender identity accords with their gender assignment or phenotypic sex’ (Dea 2016, 101).

6. Prior to 1967, women in sports were examined to ensure that they had no hidden testicles (Schultz 2011, 230). In 1967, lab-based tests were introduced (Schultz 2011).

7. Gender verification testing is the same as sex verification testing. The term gender verification was used in Semenya’s case.

8. Thanks to Paul Gaffney for providing me with some incredibly helpful feedback to strengthen this part of my paper.

9. It is worth noting that trans* men should also be permitted to compete in male categories irrespective of biological interventions. However, if there are
advantages that extend beyond effective testosterone levels that trans* men or trans* women would need in order to fairly compete in the category of their gender identity, then certain interventions might be more easily justifiable.

10. As noted by one referee, the attribution of 1% seems arbitrary. McKinnon says 1% ‘is the degree to which Bill is skilled at making long-distance basketball shots’ which is based on the expected outcome (2013, 505). This percentage could potentially be determined through less arbitrary means, such as allowing Bill to try to make the shot 100 times on multiple occasions and determining a percentage of skill based on the amount that he succeeds.

11. This theory is especially relevant for sports that are comparatively unmitigated for unfair advantages, such as running. I understand that some sports are already mitigated (e.g. weight lifting).

12. This system might only apply to individual sports because it is more complex to evaluate sports where athletes compete against one another (e.g. tennis) and team sports. Although this means that my thesis applies to a narrow range of sports right now, it is worth considering as a first step if we want to maintain the skill thesis. Also, given that genetic testing is expensive, starting at the most prestigious level is reasonable.

13. The element and the way that results would need to be adjusted would differ depending on the sport.

14. One important consequence of my account is that if we retrofit our current binaristic system by allowing transgender women to participate in female categories, then it might suggest a way forward to more radical changes to the system. My account might abolish the need to separate sports in a binaristic way since any unfair genetic advantages will be mitigated irrespective of athletes’ gender identities.

Acknowledgements

I would like to thank Matt Doucet, Patricia Marino, and Shannon Dea for their helpful guidance on earlier versions of this manuscript. Also, many thanks to the anonymous referees for their constructive feedback and to Paul Gaffney for his valuable insight and recommendations.

Disclosure statement

No potential conflict of interest was reported by the author.

References

